CET 302

Lecture #2 (8/31/04)

Chapter #2 in text

2.1 Microarchitecture of the 8088/8086 Microprocessor

Microarchitecture — internal to the processor

EXECUTION UNIT (EV) BUS INTERFACE UNIT (BIU)

GENERAL

E SEGMENT
REGISTERS

REGISTERS

[INSTRUCTION |
POINTER

atopoResSy | muLtipLexeo sus
AND BUS
CONTROL

OPERANDS] I I
| INSTRUCTION
l QUEVE

I
|
|
|
|
|

Figure 2-1

Prior to 8086 processors, the processors microarchitecture only performed one function at
a time.

To improve speed/performance, the 8086/8088 processors started to do “Parallel
Processing” (explain quotes)

In Fig 2-1, there are two processing units. The Execution unit (EU) and the Bus Interface
Unit (BIU)

Bus interface Unit (BIU)

The main responsibility of the BIU is to store and retrieve data as the commanded by the
EU, but it also maintains a four byte queue that is used to store the next instructions. The
BIU maintains the queue by monitors the CS and IP registers to find out where the next
instruction is stored. Intel designed the BIU in this manner, because they wanted to have
the next instruction waiting in the queue as soon as the EU completes the previous
instruction. This made the 8088 much faster than their predecessors, because the older

processors did not use a queue for the next instructions.
http://www.cs.uregina.ca/~haughian/cs250/chpt4.htm

bus

Last modified: Wednesday, February 05, 2003\

(1) A collection of wires through which data is transmitted from one part of a computer to another.
You can think of a bus as a highway on which data travels within a computer. When used in reference
to personal computers, the term bus usually refers to internal bus. This is a bus that connects all the
internal computer components to the CPU and main memory. There's also an expansion bus that
enables expansion boards to access the CPU and memory.

All buses consist of two parts -- an address bus and a data bus. The data bus transfers actual data
whereas the address bus transfers information about where the data should go.

http://www.pcwebopedia.com/TERM/b/bus.html

The Execution unit (EU)

The execution unit controls everything that goes on in the processor. The EU retrieves the
machine language instruction from the Instruction queue, it then deciphers the instruction
and see that the correction action is taken. If an instruction requires external data, such as
a memory location, the EU request the data from the Bus interface unit, or the instruction
may need to use data that is being stored in one of the registers, in this case the EU makes
sure that the correct register is being used.

If the instruction requests the use of the Arithmetic and Logic unit, the EU passes the data
to the Arithmetic and Logic unit, and instruction on what operation to perform on the
data. The Arithmetic and Logic unit then passes the result of the operation back to the
EU, where it stores it, either in a memory location or a register. The EU does not do any
arithmetic or logical operations, this left up to the Arithmetic and Logic unit.

http://www.cs.uregina.ca/~haughian/cs250/chpt4.htm

Arithmetic and Logic unit (ALU)

The ALU contains circuitry that can add two numbers together, word or byte form. It also
contains circuitry that can add or subtract one to a byte or word, and shifting of bits or
rotate bits, in a word or a byte.

The ALU is also capable of doing logical operations, such as; OR, AND, NOT, and
XOR. Subtraction is done by circuitry that uses two’s complementary functions.

The ALU is also responsible for doing bit operations, such as, shifting right or left, or
rotating a byte or word. The ALU performs multiplication with a combination of
additions and shifts, division is done in a similar manner.

When the ALU finishes an operation it also responsible for setting specific bits in the flag
register, these bits are set according to the result of the operation.

http://www.cs.uregina.ca/~haughian/cs250/chpt4.htm

2.2 Software Model of the 8088/8086 Microprocessor

00000,¢
External memory
address space
8088/8086
MPU
j(J Code segment
] st
=]
DS . 0000,
S8
Data segment |
ES (64 K bytes) - o
AH AL | AX
. input/ output
i BE LS address space
CH CL |cX
DH DL | DX Stack segment
(64 K bytes)
SP
Bp FFFFy5
sI
DI
Extra segment
(64 K bytes)
—
FFFFFyq

Figure 2-2

(Sections 2.7-2.10)

AX, BX, CX, DX
General Purpose Registers

Accumulator AH AL
Ease BH BL
Counter CH CL
Data D DL

« Can Be Used Separately as 1-byte Registers
AX — AH:AL
» Temporary Storage to Avoid Memory Access
— Faster Execution
— Avoids Memory Access

+ Some Special uses for Certain Instructions

AX, BX, CX, DX

General Purposs Registers - Some Specialized Uses
Accumulator AH AL
Ease EH BL
Counler CH CL
Data oH DL

= AX, Accumualor

— Main Register for Perfoming Arithmetiz

— multidiv must use AH, AL

- “aocumulator” Means Register with Simple ALL
BX, Bas=

— Paint to Translation Table in Memary

— Holds Memaory Offsets; Funclion Calls
CX, Counter

— Index Counter for Loop Contral
L, Data

— After Intager Division Exsculion - Holds R emainder

CS, DS, ES, SS - Segment Registers

Contains "for Memory Address

C8, Code Ssgment

— Used to “point” to Instructions

— Determines a Mamory Address (along with [P)
— Segmented Address witten as CSIP

D3, Data Segment

— Used to “point”™ to Data

— Detarmines Memory Address (along with other recgisters)
— ES, Edtra Segment allows 2 Data Address Registars

S5, Stack Segment

— Used to “point”™ to Data in Stack Siructure (LIFC)
— Used with SP or BP

— 55:5P or SP:BP are vaid Segment Addresses

Status Registers:

IP, SP, BP, SI, DI - Offset Registers
Contains “index Value” for Memory Address

« IP, Instruction Poirtar
— Used to “point” to Instructions
— Determines a Memory Address (along with 55)
— Segmented Address witten as CSIP

« 5| Source Index; DI, Destination Index
— Used to “point” to Data
— Detarmines Memory Address (along with other recgisters)
- DS, ES commonly used

« 5P, Stack Pointer;, BP, Base Pointer
— Used to “point”™ to Data in Stack Siructure (LIFC)
— Used with SP or BP
— 55:5P or SP:BP are vaid Segment Addresses

Inese can also be used as General R~

8086/8088 Register File (cont)

Flags Register

15 4]

x | x| x|« |OoF|OF] F | TF]2F|ZF] = [AF] « [PF] « [CF]|

Status and Control Bits Maintained in Flags Register

— Generally Set and Tested Individually

— 9 1-bitflags in 2086; 7 are unused

http://www.ece.msstate.edu/~reese/EE3724/lectures/x86pmodel/x86pmodel.pdf

Status Flags

1. The carry flag (CF): CF is set if there is a carry-out or a borrow-in for the most sig-
nificant bit of the result during the execution of an instruction. Otherwise, CF is reset.

2. The parity flag (PF): PF is set if the result produced by the instruction has even
parity—that is, if it contains an even number of bits at the 1 logic level. If parity is
odd, PF is reset.

3. The auxiliary carry flag (AF): AF is set if there is a carry-out from the low nibble
into the high nibble or a borrow-in from the high nibble into the low nibble of the
lower byte in a 16-bit word. Otherwise, AF is reset.

4. The zero flag (ZF): ZF is set if the result produced by an instruction is zero. Other-
wise, ZF is reset.

3. The sign flag (SF): The MSB of the result is copied into SF. Thus, SF is set if the
result is a negative number or reset if it is positive.

6. The overflow flag (OF): When OF is set, it indicates that the signed result is out of
range. If the result is not out of range, OF remains reset.

Control Flags

1. The trap flag (TF): If TF is set, the 8088 goes into the single-step mode of opera-
tion. When in the single-step mode, it executes an instruction and then jumps to a
special service routine that may deter vine the effect of executing the instruction.
This type of operation is very useful 1or debugging programs.

2. The interrupt flag (IF): For the 8088 to recognize maskable interrupt requests at its
interrupt (INT) input, the IF flag must be set. When IF is reset, requests at INT are
ignored and the maskable interrupt interface is disabled.

3. The direction flag (DF): The logic level of DF determines the direction in which
string operations will occur. When set, the string instruction automatically decre-
ments the address; therefore, the string data transfers proceed from high address
to low address. On the other hand, resetting DF causes the string address to be
incremented—that is, data transfers proceed from low address to high address.

The 8088 and 8086 Microprocessors 4" ed page 46

Memory and 10 Space (sec 2.3 parjand 2.13)

The software model shows a memory space (addresses 00000h to FFFFFh) and IO Space
(0000 to ffffh)

Memory Map / IO Map (not that in the INTEL WORLD they are two separate maps [not
true in all processors)

Explain the differences between memory and I0.

Dedicated, Reserved and General-Use Memory (sec 2.6)

FFFFFH
RESERVED
" FFFFCH
FFFFBH
DEDICATED Addresses Description
FFFEFN 00000-00013H Dedicated interrupts
00014-0007FH Reserved
4 A § 00080-FFFEFH General use memory
T 9 FFFFO-FFFFBH Dedicated functions
FFFFC-FFFFFH Future expansion (do not
80K use)
7FH
RESERVED
144
13H
DEDICATED
oM

Fig 2-14

The most important dedicated function is the HARDWARE RESET JUMP
INSTRUCTION found at memory location FFFFOH

Addressing (Sec 2.11)

A segment and offset describe a logical address But the 8088 processors uses physical
addresses that are 20 bits long. How does the processor create a 20 bit address when it
only has 16 bit registers (IP, Offset Registers, Seg Registers)?

15 0
OFFSET VALUE I OFFSET
A 4
hYE

15 0
ISEGMENT REGISTE To 0 0 0|SEGMENT
w4

A

4

ADDER

jp—
19 —

20-BIT
PHYSICAL MgMORY ADDRESS

Fig 2-18
Storing Values (sec 2.3 [par] 2.4)
Loned-vs Misalioned

Storing 16 bit numbers:
Address Mem Mem

(bin) (hex)
0072C 11111101 FD
0072B 10101010 AA

16 bit value would be 1111110110101010 or FDAAH and the address would be 0072BH
So if you load a 16 bit register from memory location 072BH it would contain FDAAH

Data types

Unsigned Integer 8 bit value (0 - 255 dec or 0-FFh)

Unsigned Integer 16 bit (word) value (0 - 65535 or 0-FFFFh)

Unsigned Double Word value (0 - 4,294,967,295 dec or 0 - FFFFFFFFh)
Signed integer 8 bit value (+127 to — 128dec) (Stored in two’s complement)
Signed integer 16 bit value (+32767 to -32768 dec)

Signed Double word value (+2,147,483,647 to — 2147483648 dec)

Binary Coded Decimal (BCD)

The 8 bits are broken into 2 nibbles (4 bits)
Each nibble then represents 1 decimal digit (0 — 9)

ASCII
Way of storing characters into memory (see ascii table)

Many other encoding schemes for data

(we will come back to section 2.12 in a latter lecture (The Stack))

Chapter Two
HW

Pages 54-57

Questions: 7, 11, 14 (w/o aligned / misaligned), 15 (w/o aligned / misaligned), 30-33, 37,
55, 56

Additional Question: What determines the value of each of the status flags, when do
these values change?

