CET 420

Lab #3

Spring 2005

Name:________________

PURPOSE:
To continue familiarizing students with the Axiom CEM11E9-EVBU development board, Assembly Programming using the MiniIDE program, Buffalo Commands, basic ASM instructions, machine language loops and decision structures.

PROCEDURE:

1. Open the MiniIDE program. Do File | New

2. In the new window that just opened type (or COPY | PASTE) the following text:

; Name: Lab 3, Program 1

org $2000

jmp Main

LC

FCB
5

ANS

RMB
1

Buffalo
EQU
$E0B2
Main:

ldab LC

Clra

L1:

aba

decb

bne L1

staa ANS

jmp Buffalo
3. Now save your file (FILE | Save As) making sure to that the file has an extension of .asm. Then compile the program (BUILD | BUILD nameoffile.asm)

4. Verify that the output window shows no errors (note that it might show warnings, but as long as the warning says “obsolete directive” the program compiled normally). At this point you might want to refer to LAB 1 to make sure you are compiling to the 68HC11 and not the 68hc12.

5. Now download the compiled code to the 68HC11-EVBU board. Refer to LAB #1, last page for instructions (note the name that should be downloaded is nameoffile.s19)

6. Use TRACE to trace the code and enter the trace in the table below until you hit the STOP instruction:

	ASM Code
	A
	B
	X
	Y
	Z Flag

	
	D
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

7. QUESTIONS:

a. In mathematical terms what did the program do?

b. Where did the answer get stored (two locations)?

c. How many times did the program loop?

8. Now create a new program in MiniIDE (FILE | NEW)

9. Type (or COPY | PASTE) the following code:

; Name: Lab 3, Program 2

org $2000

jmp Main

STR
FCC '420 is easy'

FCB $04

OUTA
EQU $FFB8

Buffalo
EQU $E0B2

Main:
ldx #STR

L1:
LDAA 0,x

cmpa #$04

BEQ END

;
JSR OUTA

inx

bra L1

END:
jmp Buffalo
Make sure you include the ‘;’ on the JSR OUTA line (this comments out the line)

10. Load the code to the 68HC11-EVBU and trace though the code. Make special note of the contents of the A Register after the LDAA 0,X instruction and the Z flag after the CMPA #$04.

11. QUESTIONS:

a. What was in the A REGISTER after each of the LDAA 0,X instructions?

b. Explain how the LDAA 0,X instruction works.

c. How does the loop end?

12. Now edit the original code and remove the ‘;’ before the JSR OUTA. Recompile the code and send it to the 68HC11-EVBU. This time instead of trace run the program using the Go command. The syntax for the command is Go <start loc> so in this case, we will use Go 2000 (note: the ‘o’ is optional).

13. Question:

a. What did it do?

b. What do you suppose the JSR OUTA does? (What registers have to be loaded and what information has to be in the register(s) to do what it does)?

14. Now create a new program and type (or COPY | PASTE) the following code:

; Name: Lab 3, Program 3

org $2000

jmp Main

STR1
FCC '420 is easy'

FCB $04

STR2
FCC ' so is ASM programming'

FCB $04

Buffalo
EQU $E0B2

OUTA
EQU $FFB8

Main:
ldx #STR1

jsr OUTS

ldx #STR2

jsr OUTS

jmp Buffalo
OUTS:
psha

pshx

OL1:
LDAA 0,x

cmpa #$04

BEQ OEND

JSR OUTA

inx

bra OL1

OEND:
pulx

pula

rts

15. Questions:

a. What does this program do?

b. Why is the LDX before each JSR OUTS?

c. Unlike Program 2, in this program the output is in a subroutine. What would have to be done in program 2 to get the same output?

d. How does this benefit the programmer?

e. How does this effect memory usage?

16. Now create a new program and type (or COPY | PASTE) the following code:

; Name: Lab 3, Program 4

org $2000

jmp Main

NUM1
FCB $7B
NUM2
FCB $2D
Buffalo EQU $E0B2

Main:
LDAA NUM1

LDAB NUM2

CMPA #$39

BEQ B1

BLO B2

ABA

BRA B3
B1:
SBA

Bra B3
B2:
ABA

SUBA #$2F
B3:
JMP Buffalo

17. Before sending the code to the 68HC11-EVBU, open the .lst file in the same directory where you stored the program. Note the address of NUM1 and NUM2.

18. Now download the code to the board and trace it. Note if the program performed a branch, were it went and the registers at the stop instruction. Continue to fill out the chart below, each time replacing NUM1 and NUM2 with the value specified in the table with a MM command. Don’t forget that RM P must be done EACH TIME you trace through the code with new NUM values.

	NUM1
	NUM2
	A
	Branch Performed

Circle one

	Original value

123
	Original Value

45
	
	NONE B1 B2

	45
	37
	
	NONE B1 B2

	57
	22
	
	NONE B1 B2

	145
	32
	
	NONE B1 B2

19. Flowchart, using Visio, programs 1 and 4 in this lab and turn in a printout of each flowchart with this paper.

